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Dealing with open boundaries in the computer simulation of
unsteady subsonic shear flows presents challenging problems. In prac-
tice, only a portion of the flow can be investigated and we must ensure
that the presence of artificial boundaries does not pollute the solution
in a significant way. One difficulty is related to the basic solution of the
physical flow equations and involves choosing appropriate nonlocal
open boundary conditions at the cutflow boundaries which will ade-
quately bound the computational domain while providing information
about the virtual flow behavior outside. A second difficulty is related to
the discretized computational problem, for which additional numerical
boundary conditions that are consistent with the unsteady flow equa-
tions at the boundaries are required for closure. Recent approaches
based on characteristic analysis and their practical implementation are
discussed. Specific examples are used to illustrate the implementation
of state-of-the-art approaches 1o open boundary conditions and, in
particular, the potential sensitivity of subsonic free shear flows to the
actual choice of open boundary conditions. This sensitivity is an intrin-
sic feature of the flows being studied rather than an artifact of the com-
putations. /deal free shear flows do not exist; actual flow realizaticns are
defined by the numerical or laboratory boundary conditions in the
experiments. € 1994 Academic Press, Inc.

1. INTRODUCTION

Shear flows such as are present in mixing layers, wakes,
and jets (Fig. 1) are of great interest because of their
crucial roles in many practical applications. Experimental
investigations in idealized geometries have shown that
large-scale coherent structures (CS) in these flows dominate
the entrainment and mixing processes [ 1]. The study of the
physical properties of CS requires accurate flow data to
tdentify and characterize their main features in order to
develop conceptual models and analytic frameworks for
their description. Computer simulations and laboratory
experiments offer two complementary approaches in this
research.

The CS in free (unconfined} shear flows are spatially
evolving, and imposing realistic open boundary conditions
for their computer simulation is a difficult problem. Because
of this, it has frequently been preferred to focus on tem-
porally (as opposed to spatially) evolving calculations using
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well-posed periodic boundary conditions {e.g., Ref [27).
This approach can be though of as describing the time
evolution of the flow in compact regions. However, major
aspects of the growth and dynamics of laboratory turbulent
shear-flows, e.g., asymmetric entrainment [ 3] and feedback
phenomena [4], cannot be captured by spatially periodic
simulations, since they are intimately associated with the
flow development in both space and time. In practice, as in
the laboratory investigations, the finite dimensions of the
flow domain investigated are unavoidable, and one must
determine ways of ensuring that the flow in the regions of
interest is not significantly affected by the presence of artifi-
cial boundaries. At these open boundaries, the flow of infor-
mation in both directions must be allowed, non-physical
reflections are to be avoided, and the flow must be capable
of relaxing in prescribed ways to ambient conditions.

The simulation of subsonic shear flows is based on the
numerical solution of the Navier-Stokes (NS) equations
with appropriate boundary conditions (BC). This involves
dealing with the system of time-dependent, compressible,
conservation equations for total mass and energy density
and momentum

ap _
Et--%-V-pV—O, (1)
a(—gt‘Q+V-(,;JVV-{-PI—J"')=O, (2)
¢E
E+V-[(E+P)I—F]V+V-(.Q)=0, (3)

where p is the mass-density, V =(u,, u,, 13} is the flow
velocity, I and I are the non-dimensional-unit and viscous-
stress tensors, respectively, and P is the static pressure. The
heat flux Z is given by

2= —xVT, (4)
where T is the temperature, x is the thermal conductivity,
and y is the ratio of specific heats. For simplicity we restrict
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ourselves to ideal gases, in which case the total energy
density can be related to the other flow variables by

P
= +-pV2
(y_1]+2,0 (5)

E

The number of inflow/outflow open boundary conditions
(IOBC), that are required to ensure well posedness and thus
completely determine the flow solution in a given finite
domain, are well known from theoretical analysis for both
Euler and NS equations (e.g., Refs. [5, 6]) and are listed for
reference in Table 1.

Because of discretization, derivatives can only be
approximated at the boundaries, and in order to ensure the
closure of the discretized system of equations, additional
numerical boundary conditions need to be specified (here-
after referred to as CNBC). The standard procedure is to
introduce these new conditions by defining the behavior of
physical variables at an extra row of guard cells surrounding
the domain. The CNBC are to be clearly distinguished from
the discretized representations of IOBC {hereafter also
denoted by IOBC), which are required in order to uniquely
define the solution of the non-discretized fluid-dynamical
problem.

As a practical example, consider the 3D Euler equations
and the problem of specifying the necessary open boundary
conditions in the x,-direction, which we assume to be the
streamwise direction. At the inflow boundary, the needed
four 10BC can be chosen to be the specified free-stream
values of mass-density and velocities, p, 4, U, U4, and an

TABLE I
Number of I0BC Required for Well-Posed 3D Subsonic Flow

Number of IOBC

Type Euler NS
Inflow 4 5
Outflow 1 4

additional CNBC for the closure of the discretized system of
equations is needed to relate the guard-cell values of the
static-pressure—or equivalently, of the total energy—to
information on the flow inside of the domain (Section 4}.
If only the pressure gradient is specified at the inflow
boundary, the pressure itself should be specified elsewhere
at the boundaries to prevent the possible drift of its value.
However, specifying the pressure {(or any of the other
primitive flow variables} at the downstream outflow
boundary of a {inite-sized computational domain will define
flows which might be physically valid but do not correspond
in general to spatially developing shear flows of interest. We
need to specify both the pressure at x, = o0 and the way in
which the pressure at the boundary physically relaxes to the
ambient value P,. Because the transition of the flow to
ambient conditions is in general a function of the flow
features inside the computational domain—beyond those
strictly in the neighborhood of the outflow boundary—
these flows require the specification of nonlocal outflow BC.
In addition, CNBC are needed to completely determine the
gradients of p, u,, u,, u;, at the outflow boundary. At open
boundaries in the shear-flow cross-stream directions x, and
x5, special considerations are needed to define BC, since the
flow does not have a specific inflow or outflow behavior
there and transparency to acoustical propagation must be
ensured. Although much of the formalism on open BC that
is discussed below in Section 3 is also appropriate for the
cross-stream boundaries, the treatment of these boundaries
is not specifically addressed in this paper, where the focus is
on streamwise inflow and outflow BC.

In the present paper, we address two basic practical dif-
ficulties in uniquely determining a numerical free shear-flow
solution. One is related to the basic solution of the physical
flow equations and involves choosing appropriate nonlocal
IOBC at the downstream outflow boundary. The second
difficulty is related to the discretized (computational)
problem and involves ensuring that the CNBC required for
closure are prescribed in a consistent way. In Section 2 we
discuss the limitations of traditional simplified approaches
to dealing with open boundaries based on using time-inde-
pendent boundary conditions. Recent improved approaches
are reviewed in Section 3, and their pracitcal implementa-
tion for actual subsonic (compressible} shear flows is
discussed in Section 4. Final remarks are presented in
Section 3.

2. TIME-INDEPENDENT APPROACHES

In these approaches to defining BC one relies much more
on the eflective presence of buffer regions surrounding the
flow region of interest than on relating seif-consistently the
shear-flow solution to actual boundary conditions. It basi-
cally involves using some sort of “reasonable” time-inde-
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pendent outflow BC—usually chosen based on simplicity
considerations—which are imposed as “far away as
possible..” In that respect, this approach is very similar to
that used in the laboratory to choose the actual size of the
experimental facilities and the nature of their boundaries so
that they will affect the flow studied as little as possible.
Besides effectively separating the flow-regions of interest
from the physical location of the boundaries, the buffer
regions can also be effectively used as “viscous-sponges” by
damping and/or absorbing to some extent spurious acoustic
disturbances that may be generated at the open boundaries.
In practice, this can be implemented by introducing strong
numerical dissipation in the buffer regions, eg., by
stretching the size of the computational cells, or by actually
adding appropriate artificial dissipation terms to the flow
equations.

Practical computer simulations using such time-inde-
pendent approaches have been reported in the literature for
various {low configurations and regimes. Typical outflow
BC use time-independent extrapolations of the flow
variables at the boundaries [ 7-11], which at times are also
used in conjunction with either finite-to-infinite mappings
[7]. or stretched grids and pressure extrapolations to
approach ambient conditions [8]. In the case of the incom-
pressible calculations of Ref. [ 7], for example, the emphasis
of the study was on unsteady flow features, and minimizing
the effect of the outflow boundary conditions on the flow
solution was approached by organizing the flow using
forcing at the inflow and restricting the time-dependent
study to relatively short times. In the calculations of
Ref. [8] a temporal statistical study of a compressible
{(subsonic) unforced jet was involved, in which relatively
large stretched-grid buffer-regions were used to ensure
stable statistical results in the initial jet region. In Refs.
[9-11] computer simulations of incompressible reactive
mixing layers [9] and plane wakes [10,11] used
homogeneous Neumann outflow conditions based on either
first [10] or second-order [9, 11] velocity derivatives on
domains with finite streamwise extent.

In general, the use of viscous-sponge buffer regions and/or
simplified time-independent outflow BC is not necessarily
consistent with the flow equations and/or physical intrinsic
feedback effects present in actual physical realizations of free
shear flows. As a consequence, the usefulness of this
approach is restricted to isolating a region of the flow for
relatively short-timed unsteady simulations, or for simula-
tions that are either forced or mainly focused on the initial
shear-flow dynamics. Otherwise, the approach may be
expensive or inadequate for unforced calculations and/or if
very long runs are required for stable temporal statistics.

Considerations of computational efficiency and accuracy
make it desirable to eliminate the use of buffer regions and
focus more on the actual choice of boundary conditions and
in particular, on the adequacy of specific CNBC for the

shear-flow problem posed. A certain amount of “artistic
work” is traditionally involved in choosing CNBC.
Although there is no general guideline for the choice of
CNBC, one can show that relatively simple and apparently
reasonable, time-independent outflow CNBC can lead to
unphysical and, eventually, unstable solution behaviors. In
order to see this, consider a model equation for mass-trans-
port in the direction (x,) across a boundary, obtained by
linearizing the continuity equation and reducing it to an
advection equation,

Opjot+u, Bp/ox, =0, (6)

where u; =20 is the local x,-component of the outflow
velocity near the boundary. We discretize this equation by
a first-order upwind scheme and relate the outflow-guard-
cell value p% at the nth integration cycle as a function of
p2~ ! and the Nth cell value at the boundary, p7; ", from the
previous integration cycle by the expression

pe=pi(l—a)+aph ", (7)

where

a=ulAI/Axoul:C(Axmin/Axout)ul/(ul+a) (8)

peak?

At is the integration timestep, ¢ and a=(yP/p)"* are the
Courant number and sound speed, and dx_,;, and Ax,,, are
the minimum spacing in the grid and the spacing at the out-
flow boundary, respectively. Using (7) we can assess the
quality of frequently used lower-order outflow CNBC
defining guard-cell values at the current integration cycle
using zeroth order extrapolations from the boundary
values,

n _ =1
Pa=PNn

(9
which corresponds to choosing a=1 in (7). For subsonic
flows {say, Mach numbers M < 0.5} and Courant numbers
c < (.5, from (8) we have « < (.17, which indicates that the
effect of the time derivative cannot be neglected and a zeroth
order extrapolation to define the guard-cell values at an out-
flow boundary is inconsistent with the flow equation (6)
and unrealistic for these flow regimes. In particular, (8)
indicates that the approximation is worse for smaller local
values of the Mach number, ie., on the slower side of the
simulated shear flow. In the incompressible regime, it has
been shown that spurious reflections at the boundaries
generated by the use of inadequate CNBC can induce
artificial self-sustained global instabilities in free shear
flows [ 127.
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3. RECENT IMPROYED APPROACHES

From the purely mathematical point of view, so-called
non-reflective boundary conditions of various types have
been proposed for hyperbolic equations, as recently
reviewed by Givoli [13]. The general idea is to use
knowledge on the mathematical solution outside of the
computational domain to define conditions which will mini-
mize spurious reflections at the artificial boundaries. These
non-reflective conditions are generally non-local and <an be
either totally absorbing (as in, e.g., Ref. [14]) or allow for
some natural reflections to occur {e.g., Ref [15]). Such
natural reflections should be built in the outflow IOBC in
the simulation of subsonic free shear-flows if we are to have
emulation of feedback effects, by which events that are
assumed to virtually occur outside of the computational
domain can effectively influence the flow inside.

Although it may appear obvious, it is generally over-
looked that choosing “appropriate” IOBC in numerical
shear-flow studies emulating laboratory realizations is only
meaningful to the extent that the corresponding outflow
{and other} BC in the shear-flows to be simulated are well
specified. Otherwise, the choice of IOBC is subjective, since
it amounts to guessing the nature of the BC involved in the
“well-established” experimental results in the literature—
where only information on the initial (inflow) BC is typi-
cally reported. In the laboratory experiments, the effects of
boundary conditions other than initial conditions has been
regarded (if at all) as due to “unavoidable facility-dependent
background disturbances,” which are suggested to be
responsible for observed differences between experimental
results [16]. In fact, inspection of Table I clearly indicates
that specifying the inflow boundary conditions is not
sufficient to completely specify the flow inside a prescribed
finjte-sized open domain. Thus, these “background distur-
bances” in the experiments actually correspond to the
specifically distinct facility-enforced BC. The issue is further
addressed from the laboratory-experimentalist’s point of
view by George [17]:

Unlike the theoretician, the experimentalist already knows the
solution, for it is the flow he has realized, His objective is to find
which equations and which boundary and initial conditions his

solution corresponds to, and then to compare them and his
results to those dealt with by the theoretician.

An implicit assumption in the laboratory and numerical
studies is that the flow-solution associated with the com-
bined experimental-domain/BC system approximates either
a limiting ideal regime in which the free shear flow becomes
independent of the downstream BC, or for which the solu-
tion is nearly the same as that in an unbounded domain.
However, since both initial and other boundary conditions
have a role in specifying the flow-solution and feedback
effects are unavoidable for subsonic flows, the existence of
such an ideal regime that is independent of BC is unrealistic.

Moreover, since the traditionally expected universality of
asymptotic self-similar behaviors is now in doubt [i8],
even in the limiting case of idealized (unbounded) free
shear-flows, the specification of the outflow IOBC is
probably not unique.

Focusing now on the problem of specifying the CNBC
needed for closure of the discretized system of equations, a
basic guideline should be to require that the CNBC be con-
sistent with the IOBC prescribed for the non-discretized
problem and approximate the unsteady flow equations as
accurately as possible at the boundaries. For hyperbolic
equations, for example, it is well known that the nth order
internal solution of the equations requires at least (n — 1}th
order additional CNBC to preserve the formal spatial
accuracy of the calculations [ 19]. The goal is to ensure that
the expected flow behavior outside the computational
domain is properly and consistently imposed on the solution
inside, a requirement that is frequently overlooked. The
consistency requirement demands that in the continuum
limit such CINBC be compatible with the flow equations and
I0BC and do not generate distinctly new BC overspecifying
the fluid dynamical problem. However, this guideline is not
sufficient to uniquely determine the CNBC and some degree
of ambiguity appears to be unavoidable, unless additional
requirements are imposed.

Beyond the issue of specifying IOBC and CNBC for the
particular shear flow of interest, we need to deal with the
problem of imposing them in the practical simulations. For
hyperbolic equations, an adequate framework has been
proposed by Thompson [ 14, 207 that is based on a charac-
teristic-analysis formalism for the Euler equations. The
problem of imposing the BC is addressed by focusing on the
terms of the flow equations containing derivatives with
respect to the (local) direction perpendicular to the
inflow/outflow boundary. These terms require special
numerical treatment because they partially depend on
incoming information from outside of the computaticnal
domain. Other terms in the flow equations, not containing
these derivatives, can be treated in the neighborhood of the
boundary in the same way as inside the computational
domain. For the sake of the discussion, let x, be the local
inflow/outflow direction. Then, these derivative-terms can
be conveniently cast in terms of the amplitude-variations of
characteristic waves { %} [20],

? 1
el R
2
a(tgiul):%(yl_‘_gs)’ {11
1
ula(ul)_ 1 (12)
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axl 2pa( 5 1)!
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=, (13)
), (14)
dx,
where the amplitudes % are defined by
opP du
H=h|——pa— 15
1 l(axl Paaxl): (15)
dp oP
B=dy|a? 2 2 16
2 2 (a axl axl)a ( )
PAN (17)
0x,
a
Bi= A, (18)
dx,
aP du,
L= 4; (63—x;+pa5xl)’ (19)
and the {4} are the characteristic velocities
A =u—a (20)
/12=)~3=)-.4=UI, (21)
As=u, +a (22)

The characteristic velocities 4, and 1, represent the velocity
of sound waves moving in the —x, and +x, directions,
respectively, while 4,, A5, and 2, are the advection velocities
for entropy, u, and u,, in the +x, direction.

In the formalism by Thompsen [20] the problem of
determining the derivatives at the boundaries in (10)-(14} is
reduced to that of locally evaluating the amplitudes %,
where those associated with outgoing waves are determined
using CNBC generated with one-sided fnite-difference
expressions based on information from the inside of the
computational domain. The problem is to determine the
amplitudes associated with the incoming waves, which
involve information that must be externally specified. This
information can be provided by the IOBC, when these are
given in terms of the % as in, e.g., Ref [20]. In the more
general case, however, the information on the incoming
waves is not readily available. Poinsot and Lele [21]
propose specifying the %, for incorming waves, based on the
local one-dimensional inviscid (LODI) equations in the
direction perpendicular to the boundary (Appendix) for
which the amplitudes % can be determined exactly using
the IOBC for the problem under consideration. Although
this approach is limited by the extent to which the one-
dimensional characteristic analysis is appropriate for the’
problem under consideration, it provides a systematic and
consistent way of prescribing the &,
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In many cases, the nature of the shear-flow dynamics at
the open boundaries is essentially inviscid; viscous effects
can be neglected there and it suffices in practice to use the
derived inviscid CNBC for the NS equations. This is
assumed to be the case in the present paper. Otherwise, the
CNBC derived with this approach need to be supplemented
with appropriate additional (viscous) conditions. In the
next section, we discuss relevant issues that are involved in
the practical specification and implementation of [OBC and
CNBC in the framework of Refs. [20, 21]. The test cases
examined below illustrate the potential sensitivity of the
dynamics of a subsonic shear flow to the actual choice of
TOBC and CNBC.

4. EXAMPLES OF BOUNDARY CONDITIONS
FOR SHEAR FLOWS

The exact nature of feedback effects in subsonic shear
flows is problem dependent in general. In particular, feed-
back effects due to coupling between inflow and outflow
[OBC are expected on physical grounds for subsonic shear
flows and are certainly unavoidable. In this section we focus
on two problems which, by construction, allow us to isolate
to some extent the effects of streamwise inflow and out-
fiow BC: (1) the initial development of the KH instability in
an unforced mixing layer; and (2) the dynamics of a
developed single-frequency forced mixing layer. To simplify
the discussion, two-dimensional cases are studied here, in
which (1) viscous eflects are neglected; (ii) rectangular com-
putational domains are used where the relevant inflow and
outflow directions are fixed and coincident with the
streamwise direction and for which the boundaries in the
cross-stream direction are chosen far away from the shear-
flow regions. The cross-stream boundaries are approached
on both sides with a geometrically stretched grid, while the
grid is uniform in the streamwise direction and evenly
spaced within the flow-region of interest. Addressing the
improved formulation of BC at the side boundaries, the
definition of generalized IOBC and CNBC in order to deal
with viscous effects, as well as the treatment of corners and
(3D) edges in the boundaries, is beyond the scope of the pre-
sent paper. Appropriate extensions of the formalism can be
pursued with this regard following the approaches proposed
in Refs, [20,21].

In following the one-dimensional framework of Refs.
[20, 21] for dealing with inflow/outflow boundaries, one
should note that assumptions are made: (1) that we can
focus on a “characteristic flow direction” normal to the
boundary, not necessarily coincident with the acrual local
characteristic direction of the unsteady flow in general; (2)
that the local fluid velocity normal to the boundary does not
vanish and has a well-defined sign, so that a well-defined
number of characteristic incoming waves (and thus of
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LOBC) are involved at the corresponding boundary. These
assumptions are quite reasonable in some cases, such as, at
an inflow boundary normal to an initially laminar parallel
shear shear flow. However, as shown below, depending on
how far the flow features near the outflow boundary are
from being one-dimensional, assumption {l) may be
less appropriate and more general multidimensional
approaches may be required.

Inflow Conditions for the Unforced Mixing Layer

In the general three-dimensional case, there is one out-
going wave at the inflow boundary (associated with %) and
the other four amplitudes are associated with incoming
waves which must be determined using [OBC, eg,
specifying p, u,, u,, u;. We need to give a fifth condition
{(CNBC) to determine, e.g., dP/dx,.

Since we are fixing u, at the inflow, du, /8¢ = 0 holds there,
and when used with {A.3) from the Appendix, it follows that

L= {23)

Using (23) in (A.2) yields

arP P
at+ 1 — %

(24)
where, since % is associated with an ougoing wave at the
inflow boundary, it may be evaluated at the guard-cells
using (15) and one-sided differences based on information
inside the computational domain, to calculate the guard-cell
pressures, P7%, at the current integration time in terms of
those at the previous cycles. A low-order approximation to
P? can be obtained using (15) in (24) in the form

Po=Py (P = P henT ) el pal!
¥ [(u)17 "= (), ]+ O(Ar 4x,), (25)

where indices “/” and “k” are assumed and omitted corre-
sponding to directions “2” and “3”, respectively, the lower
index “o” refers to the specified initial (free-stream) inflow
conditions, and &%~ = A#((u,), —a% " ')/Ax,.
A simpler, lower-order form of (25},

Pe=ri7 (26)
differing from (25) in terms of order @({A¢)° 4x,), has been
extensively used in free shear-flow simulations (e.g,
Refs. [4, 8]) and loosely regarded as a zero-gradient condi-
tion on the pressure. It should be noted, however, that in
these simulations the Courant number is fixed, so that Az
and dx, are linearly related, and upon replacing P7~' =
P74+ 0(4t) in (26), we {formally) obtain

Py =Py +0(4x)), (27)

which is not a finite-difference representation of dP/dx =0.
Such a zero-pressure-gradient CNBC is inconsistent with
the flow equations and would thus be inadequate.

Figure 2 shows the two-dimensional flow configuration
considered in Ref [4], in numerical simulations of com-
pressible, spatially evolving, unforced, planar shear flows
used to investigate the role of feedback in the reinitiation of
vortex roll-up. The focus of this work was on the develop-
ment of the instabilities due to the presence of an inflectional
velocity profile, during a time interval that is short enough
to ensure that it is not influenced by events at the outflow
boundary. Because of the way in which this problem was set
up, it is ideally suited to isclate and assess the effects of
CNBC at the inflow.

Two coflowing laminar air streams enter a long chamber
defined by two walls. The mixing layer is initialized
uniformly at STP everywhere. For the specific examples dis-
cussed here, the mean Mach number is, M = {/a =0.3 and
the free-stream velocities are, U/; =2x 10° em/s and U, =
2 x 10% emy/s, where U= (U, + U,)/2 is the mean free-stream
velocity. The initial and inflow velocity profiles are
defined in terms of the hyperbolic tangent profile U(y)=
U[1+ R tanh(/20,)], where R=(U,—U,)/2U, which
approximates quite well the profiles in the initial region of
the experimental shear layers. The instability mechanism of
these inflectional velocity profiles is inviscid and viscous
diffusion only damps the process. It is then adequate to
investigate the dynamics of the instabilities based on the
solution of the inviscid, time-dependent, compressible
conservation equations for ideal gases.

In the case-studies examined here, the equations are
solved using a nonlinear, explicit, compressible, finite-dif-
ference flux-corrected transport (FCT) algorithm [ 23]. The
accuracy of the particular version of the FCT algorithm
used in these simulations is fourth order in phase and
second order in amplitude and time, and the simulations
were performed for fixed Courant number (0.5). Thus, the
conditions imposed at the boundaries must be at least first-
order accurate in space and time to preserve the formal
global accuracy of the flow solution [20]. Inflow and out-
flow boundary conditions were imposed in the streamwise
direction. Reflecting free-slip walil conditions were imposed
in the cross-stream direction.

The inflow IOBC used in the two-dimensional studies of
Ref. [4] specify the density and velocities and impose

— wall 2008,
— ]
[ S, =
Uil B 7T 2y
Uz—_. t 2 £
’ wall -2006,
0 x 12000,
FIG. 2. Flow configuration for the unforced mixing layer.
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CNBC on the energy. These conditions were implemented
by setting the guard-cell values for the mass and velocity
densities at the inflow equal to their specified free-stream
values:

PG=Po (28a)
(1)) =1{u),= U(y), (28b)
(u3)6=0, {28c)

and using (26) for the pressure. The guard-cell values of the
energy were calculated through the equation of state as a
function of the corresponding values of mass density,
momenta, and pressure. At the outflow, linear advection
equations were imposed using the local velocity near the
boundary, and the pressure was relaxed towards a specified
ambient vaiue. As stated above, however, the test cases
discussed below were carried out (by design) during times
sufficiently short so that the exact nature of the boundary
conditions specified at the downstream boundary would
have no effect on the flow features investigated.

a b
o e — — —— = e e —— ]
| t = 3.07
= — —
m@@== w@@r——-—
t = 4.57
MP

550, ——

-558,

0 X 5406,

FIG. 3. Initial development of the unforced mixing layer in terms
of vorticity contours. The regions shown in the fipures correspond to the
subregion denoted by D in Fig. 2. CNBC used at the inflow: (a) Eq. (25}
(b) Eq. {26).

The small velocity perturbation triggering the KH
instability appears early in the shear layer near the inflow
boundary and is caused by an initial mismatch due to dis-
cretization between the imitial conditions and the inflow
boundary conditions (see also Ref. [127). The perturbation
is impulsive (broad-band) and of peak level less than
0.2% U. Figures 3a and 3b compare the initial development
of the instabilities for R =0.82 and M = 0.3, using (25) and
(26), respectively, in terms of sequences of vorticity con-
tours, in order to examine the sensitivity of the shear flow to
changes in the CNBC at the inflow, Specifically, we are
interested in assessing the dependence on CNBC of the
receptivity of the initial shear layer to acoustic disturbances
originated by the vortex dynamics downstream.

As the initial instability grows and is convected
downstream, the thin initial vorticity distribution along the
centerline is distorted, becomes concentrated locally in two
regions, and then breaks and forms a pair of vortices. The
frames at time 7=4.57 show the reinitiation of the
instabilities on both sides of the initial vortex pair. At later
times, the vorticity layer breaks up further, and new vor-
tices—better defined on the left of the vortex-pair—roli up,
roll around, and merge with the older neighboring vortices.
This is followed by subsequent roll-ups and further
mergings involving the original successively enlarged
vortices.

The area shown in the frames in Fig. 3 corresponds to the
small region D in Fig. 2. By construction, the times of the
frames in Fig. 3 are early enough to ensure that any
spurious reflections of acoustic signals at the outflow
boundary have not had enough time to affect the flow or
even to occur. Moreover, the observed pattern of global self-
sustaining instabilities, in which new vortex-roll-ups are
triggered in the initial shear layer by pressure disturbances
originating in the fluid accelerations downstream, is also
independent of the presence of the walls [4].

As in the laboratory experiments, the inflow conditions in
the simulation actually define the behavior of the initial
shear layer and its receptivity properties. The initial condi-
tions for this problem were defined by a specified inflow flux
that was provided by fixed mass density, an inflectional
streamwise velocity profile, and a zero-cross-stream
velocity. The conditions used here impose a floating condi-
tion on the pressure at the inflow through (25) or (26). This
allows finite (unsteady) cross-stream pressure differences to
appear in the initial shear layer in response to acoustic
waves and potential pressure fluctuations generated by
events downstream, thus allowing {physical) feedback to
occur. Comparison of the corresponding frames in Figs. 3a
and 3b, including the first seven vortex roli-up events shows
that the basic pattern of self-sustained vortex roll-up with
mean characteristic time 7 is independent of whether {25) or
(26) are used at the inflow. On the other hand, the differen-
ces between the bottom frames of Figs. 3a and 3b indicate
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that the details and phase reference of the subharmonic
feedback loop [2] connecting the vortex pairing at
t ~ 61 — 77, with the early stages of a new merging suggested
in the bottom frames of Fig. 3, are clearly sensitive to the
accuracy of the CNBC used at the inflow. For the accuracy
of the numerical scheme used here, the use of (25} as CNBC
should be preferred for studies requiring accurate deter-
mination of vortex-merging locations in space and time.

Outflow Conditions for the Forced Mixing Layer

The dynamics of a single-frequency forced mixing layer
arc essentially characterized by vortices rolling up at the
forcing frequency. The initial shear layer is modulated by
pressure fluctuations that originated with the fluid accelera-
tions downstream within the computational domain and by
those virtually occurring outside—effectively emulated by
the incoming information imposed by the outflow IOBC. As
shown betow, depending on the flow history and on the
nature of these feedback eflects, vortex mergings may also
occur. In what follows, we illustrate the sensitivity of the
flow dynamics to the choice of IOBC at the outflow.

At an outflow boundary of a subsonic 3D flow configura-
tion, there are four outgoing waves and one incoming wave
(associated with %)) for which we need to specify an IOBC.
Poinset and Lele [21] propose specifying the amplitude <
in the form

oP ou
#H=(u,—a) (a—ﬂaa—xl)
1 1

=A(P—P, )+ 2T, (29)

with " =o(l — . #*)a/L, as defined by Rudy and
Strikwerda [22], where .# is the maximum free-stream
Mach number in the flow, a is the local sound speed at the
outflow boundary, and the characterictic length L and
parameter ¢ have to be specified, and where % 7**“—to be
determined, based on the assymptotic properties of the solu-
tion outside of the computational domain—ensures “an
accurate matching of the derivatives between both sides of
the boundary,” while the first term on the right-hand side
“keeps the mean pressure values around the reference
value P_.”

For 0 =0 and #{*" =0 we obtain a so-called perfectly
non-reflecting condition [21] of the type used in the work
by Thompson [ 20],

0P Ou,

——pa—= 30
dx, pa ox, (30)
When more than one spatial dimension is involved,

however, condition {30) is only the first (lowest-order)in a
hierarchy of approximations to a non-reflecting condition

for multidimensional problems derived by Engquist and
Majda [ 24]. Thus, for these more general problems, (30} is
not perfectly non-reflecting and at best can only be regarded
as enforcing relatively-low “reflectivity” at the open
boundary-—presumably smaller when the flow features are
more nearly one-dimensional. As a consequence, when
using (29) in the general multidimensional case, incoming
waves not controlled by #{*** and " can also be expected.

In principle, we need five additional CNBC to determine
Opjdx,, Opu,[0x,, Bpu,y/ix,. Gpus/ix,, and JE/Ox, at the
outflow boundary. In practice, however, four independent
such conditions suffice, since the guard-cell value for one of
the primitive variables such as E can be determined based
on the guard-cell values of the others using relations such
as {5). The necessary CNBC can be generated from the
LOCDI (A.1)-(A.6), which for a generic primitive flow
variable Q typically have the form

a—Q+F(p,a, M, £)=0.

2 (31

In the lowest order of approximation, from (31) we obtain

Qe=0Q5  —4tFi™ "+ 0((41)%), (32)
where the amplitudes (Z)%~" in F7 ', can be evaluated
using a given expression such as (29) for i =1, and using
(15)-(19), the flow-variable information at the previous
cycle, and one-sided differences, for i> 1. Conditions
actually amounting to approximations to these CNBC have
been previously considered [25], using linear advection
of @ at the outflow boundary with the local streamwise
velocity (also for the basis for defining so-called force-free
boundary conditions in Ref. [20]).

The basic flow configuration considered in the following
tests of outflow IOBC is shown in Fig. 4. It is similar to that
in Fig. 2, except for the free-stream boundary conditions
(rather than free-slip wall BC) imposed on the side-
boundaries. An initial step-function velocity profile is used
with R=0.5 and M = 0.38. The forcing perturbation added
to the inflow transverse velocity was sinusoidal, with
(Strouhal) frequency St=/8,/U=0.028, and rms-level
002U, where @, is the initial vorticity thickness of the
mixing layer.

—'[ free-stream 1300,

— . 2

U, e :':b ;:5 v

Us ! ] E Hi

e free-stream -1306,
1) X 2106,

FIG. 4. Flow configuration for the single-frequency forced mixing
layer (Runs I-111).
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Since examining the effects of the outflow BC on the flow
is the main objective of these examples, no streamwise buffer
region is used in the simulations and the whole streamwise
extent of the computational domain is displayed in Figs. 5-7
below. For these studies, conditions (28) at the inflow, were
replaced by

PG=Pos (33a)
()= (uy),= U(y) + A sin(2xft), (33b)
(12)6=0, (33c)

and used there in conjunction with the floating pressure
condition

Po= Pl + (P = Py o

+£?}‘_1paa’(l}_ i[(ul)rll_ ! k(ul)o]

+ oy (uh) A, (34)
which is derived from the LODI {A.2) using {33) and differs
from (25) only on the term accounting for the unsteady
velocity perturbation, u}=0d(u,),/0t#0, at the inflow.
Because of the forcing at the inflow, the shear-layer develop-
ment was found to be quite insensitive to changes in the
pressure boundary condition there (e.g., virtually identical
results were found when using condition (26) instead of (34)
at the inflow).

The case studies discussed below involved the same
reference ambient pressure P, fixed initial conditions and
computational domains, CNBC of the form (32) for p, pu,,
puz, and pus and (29) as IOBC were used at the outflow,
with #5*'=0, .# =057, and L=1300,, and varying ¢
{g=0,27, and 10.8, for Runs [-III, respectively).

Test of these FOBC in conjunction with similarly defined
CNBC based on LODI were reported in Ref [21],
including the propagation in a direction normal to the out-
flow boundary of (1) a one-dimensional acoustical wave,
and {2) a two-dimensional vortex. In test case (1), the one-
dimensional nature of {29) is adequate, and spurious reflec-
tions—due to numerical discretization—were found to be
minimal; in the case of the vortex propagation, where addi-
tional reflections can be expected, the residual vorticity left
behind after the vortex is convected out of the computa-
tional domain was found to be four orders of magnitude
smaller than the peak initial vortex magnitude {two orders
smaller than when using straight extrapolation CNBC).
These results were reproduced in similar tests carried out in
the present work to check on the accuracy of the numerical
implementation of the BC.

Tests involving the convection of an isolated vortex
through an open boundary are important to address
the significance of using consistently defined CNBC to
ensure smooth vorticity propagation through an outflow

boundary, a requirement of great importance in the simula-
tion of turbulent shear flows. With these idealized tests,
however, the potential interaction of the residual leflovers in
the computational domain with a receptive spatially
developing mixing layer are not modelled and, thus, the role
of upstream feedback effects induced by events at outflow
boundaries in a real/ simulation cannot be assessed. The
significance of even relatively weak feedback effects can be
expected, based on previous simulation of unforced mixing
layers [4], where naturally induced pressure fluctuations
dP/dy x 8,/P. ~10~* were found involved in triggering
reinitiation of vortex roll-ups in compressible (M =0.3)
mixing layers. These aspects of the implementation of the
one-dimensional IOBC/CNBC approach of Ref [21] for
free shear flows are addressed in what follows.

Figure 5 shows the initial flow development in the forced
free mixing layer, over a time interval of about seven forcing
perids (z = /). The initiation of the instabilities triggered
by an impulsive start is similar to that observed in the
unforced case (Fig. 3). The figure also indicates the forma-
tion of smaller vortical structures upstream of the vortex
roll-ups due to feedback, which are immediately engulfed by
the latter vortices. Otherwise, vortex mergings tend to be
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FIG. 5. Initial development of the forced mixing layer in the domain
of Fig. 4 in terms of vorticity contours. Left and right boundaries of the
frames correspond to the actual inflow/outflow boundaries in the computa-
tional domain.
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inhibited because of the forcing, and a first merging event
between vortices associated with the forcing frequency
occurs after about five vortex roll-ups. This initial develop-
ment of the flow was found to be virtually the same for
Runs I-111, and thus independent of the outflow 10BC.

Before examining upstream effects of changing the
amount of incoming information allowed by (30) in
terms of g, we need to assess the degree of “transparency”
that can be expected from the present one-dimensional
TO0BC/CNBC approach. Such an assessment can be
obtained by considering the “non-reflective” limil {a =0)
and examining the effects of changing the relative location
of the downstream boundary. The simulated flow of Run I
is compared with a separate simulation (Run Ix) carried out
under identical conditions on a computational domain with
the outflow boundary located farther downstream, with a
streamwise extent 50% longer than that in Fig 4.
Restricting this comparison to suitably chosen short times,
we can isolate effects of reflections on the downstream
boundary in the domain of Fig. 4, using as reference the
results in the longer domain for which potential reflections
in the downstream boundary have not had the same
possibility of affecting the flow.

Comparison of results from Runs1 (left column) and
Run Ix (right column), are shown in Fig. 6, where the flow
visualization for Run Ix is restricted to the portion of the
extended domain coinciding with that of Fig. 4. Towards
the bottom of the sequence shown in Fig. 5—and the top of
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the sequence in Fig. 6a—the initial flow tramsient is being
convected out of the computational domain and the flow
features near the downstream boundary are far from being
one-dimensional as the first vortex pairing event progresses.
1t is then only natural to expect that some sort of reflections
will be allowed at the downstream boundary by the one-
dimensional non-reflective IOBC, as the system of pairing
vortices convects through the boundary at ¢ = 7r for Run I
{and at r=10tr for Run Ix}. Disturbances acoustically
propagating upstream originated by these reflections will
add to those generated by the vortex pairing process
itself [4]. Through a feedback mechanism, the initial shear
layer is disturbed by these subharmonic perturbations
generated downstream with a dominant wavelength equal
to twice that of the imposed wavelength. Such disturbances,
in turn, are amplified as they convect downstream and can
eventually trigger a new merging. Upstream acoustical
propagation with velocity @ — &/ will require transit times
~36t (Runl) and ~54tr (RunlIx) for a disturbance
generated at the downstream boundary to affect the shear
layer near the inflow. Thus, by design, upstream effects
associated with the first vortex pairing exiting the domain
are not expected for ¢ < 10.67 for Run I and for ¢ < 15.47 for
Run Ix.

These expectations are confirmed in Fig. 6. The flow
features of Runs I and Ix depicted by this figure are virtually
the same for t = 67 and ¢ = 97 (top two rows}, and for later
times the simulated shear flow on the extended domain (on
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FIG. 6. Development of the forced mixing layer in nested computational domains in terms of vorticity contours: (a} Run I, simulation in the domain
of Fig. 4; (b) Run Ix, simulation in a domain extending 50 % farther downstream (flow outside smaller domain not shown). The scaled-down domains
are indicated schematically on the top. Left and right boundaries of all frames correspond to the inflow/outflow boundaries in Fig. 4.
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the right column) shows the downstream convection of vor-
tices that are essentially undisturbed in the cross-stream
direction. On the other hand, the shear layer in Run [ on the
left shows transverse modulation on the lower two rows.
The timing of the modulation advancement in the
streamwise direction can be explained in terms of upstream
acoustical transit time required for a subharmonic distur-
bance generated at the downstream boundary at t = 7 plus
downstream convection time with velocity U. These charac-
teristic times can be used to explain the modulation advan-
cement through roughly 65 % of the domain by t =127, and
then nearly throughout the whole domain by ¢ =157, when
it is leading to a new vortex pairing depicted near the
downstream boundary. Figure 6 can also be used to isolate
upstream feedback effects directly associated with acoustical
disturbances generated by the first vortex pairing (present in
both simulations) from those related to disturbances
generated as the system of pairing vortices exits the com-
putational domain (effectively present only for Run I). For
the particular {relatively short) domains and (forced-flow)
configurations considered here, the BC-independent effects
turn out to be weaker.

Figures 7-8 focus on the developed flow at much later
times—about 30 forcing periods later than the latest time in
Fig. 5—and are used to further examine upstream eftects of
the outflow 10BC on the computational domain of Fig. 4,
as a function of the parameter ¢ in (29). Figure 7 compares
Run I using the one-dimensional non-reflective outflow
IOBC provided by (30) (Fig. 7a), with Run Il (Fig. 7b).
Based on a one-dimensional picture in which (30) is a per-
Jectly non-reflecting condition, using (29) with smali non-
vanishing & can be regarded as having greater reflectivity,
ie, as allowing more incoming information—“natural

a
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reflections”— at the outflow boundary than in the case for
o=0. A distinctive feature of the developed flow is the self-
sustained occurrence of vortex mergings, this being a conse-
quence of the feedback mechanism discussed above, by
which the initia] shear layer is disturbed by subharmonic
perturbations generated downstream. These basic features
are observed in both Figs. 7a and 7b. However, aithough
Runs I and I1 exhibit similar features, the phase-reference of
the events is clearly different; ie., they occur at different
times and space locations. These differences reflect the
perturbation of the initial shear layer due to additional
incoming acoustical waves that are allowed through the
outflow boundary in Run I1 by having a non-zero o in (30).
As more of such incoming information is allowed—following,
again, the one-dimensional picture—by further increasing
the value of ¢ (RunIll, Fig. &), longer wavelengths are
more appreciably excited through feedback in the initial
shear layer. As a consequence, mergings involving
previously merged vortices are now also observed and the
mixing layer growth is faster.

Because there are no ideally defined downstream IOBC
for free shear-flows, specifying #;-—and the actual location
of the outflow boundary—amounts to defining particular
shear-flows studied. Thus, in the absence of additional
externally given requirements (e.g., specific outflow 10BC
from a laboratory experiment to be simulated, or specific
expected near-field features to be emulated), even in a
relatively simplified IOBC/CNBC framework such as dis-
cussed in this paper, % 9" and o in (29) cannot be uniquely
prescribed and the quality of the different shear flows
specified by condition (29) can be compared only on subjec-
tive grounds.

The significance of the upstream feedback -effects
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FI1G. B. Caption as in Fig. 6 for Run 111 (s = 10.8).

associated with the outflow boundary conditions is likely to
be reduced by choosing the outflow boundary farther away
downstream or by increasing the forcing level at the inflow.
However, these effects cannot be fully eliminated and they
are particularly important in the case of unforced free shear-
flows.

3. FINAL REMARKS

We have addressed basic difficulties associated with the
specification of IOBC and CNBC for subsonic, unsteady
free shear-flows. The discussion has included the limitations
of simplified, time-independent open boundary conditions
and the practical implementation of improved approaches
based on one-dimensional characteristic analysis. An
improved control of reflections at the downstream
boundary in spatially developing shear-flow simulations
will demand more general multidimensional approaches
and BC analysis. Some of these approaches appear to be
available in the mathematics literature but their actual
transition to practical useful tools in turbulent shear-flow
simulations remains to be investigated.

A crucial issue raised in this work is that of imposing
appropriate outflow 10BC for specific shear-flow studies.
The examples have illustrated the potential sensitivity of
subsonic free shear-flows to the actual choice of outflow
IOBC, which is an intrinsic feature of the flows being
studied. In order to improve the characterization of these
flows, through the combined efforts of laboratory and
numerical experiments, it is essential to have information on

the (generally not reported) far-field flow conditions
imposed by the laboratory facilities, or at least, evidence of
the extent of dependence of the experimental observations
on IOBC and other BC besides the initial (inflow) boundary
conditions.

APPENDIX

For the sake of the discussion in this paper, a convenient
set of a LODI system of equations in the x,-direction for the
mass density, static pressure, momenta, and x;-velocity, in
terms of the %, is the following:

dp 1 1
A LR R ) EUR TN
éP 1
S4B+ A)=0,  (A2)
%JrL - Fy=0 Al
a1 2pa( s—Z£1)=0, {A3)
gpu, 1 |
L Mgz -1 5
+(M+I)23}]=0, (A4)
Opu, u, |
o7 T T E ) |+ph=0,  (AS)
Opuy Uy

|
L +F[%+,(£+Z)]+pg§,=o. (A6)

2

Depending on the choice of flow variables, other sets of
LODI equations are possible [201.
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